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Abstract: In this paper, we proveghat maximum planar H-matching (the problem of detern king
the maximum number of node-disjoint copies of the fixed graph H coptained in a variable lanar
graph G) is NP-complete for any connected planar graph H with three or more nodes. We also
showrthat perfect planar H-matching is NP-complete for any connected outerplanar graph H
with three or more nodes, and is, somewhat surprisingly, solvable inllinear time for triangulated
H with four or more nodes, The results generalize and unify several special-case results proved
in the literature. The techniques can also be applied to solve a variety of problems, including the
optimal tile s dvage problem from wafer-scale integration. Although ,e prove that the optimal tile
salvage probl 2m and others like it are NP-complete, Sie also describe provably good approximation
algorithms tiat are suitable for practical applications. •
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1. Introduction

Generalized matching problems have been studied in a wide variety of contexts. (S3ee [61 and

[8) for a large collection of references.) One common form of generalized matching is o find the

maximum number of node-disjoint copies of some fixed graph If in a variable graphi G. This

form of the problem is called maximum H. matching. When 11 is an edge, this is ;,imply the

standard maximum matching problem. It is well-known that maximum matching car. be solved

in polynomial time. In [81, however, Kirkpatrick and Ifell show that any non-trivial generalization

of maximum matching is NP-complete. In fact, they show that perfect H-matching (the problem

of deciding whether or not the nodes of a variable graph G can be completely covered by node-

disjoint copies of a fixed graph II) is NP-complete for any connected H with three or more nodes.

As a consequ nce, the maximum Il-matching problem is also shown to be NP-complete for any

connected graph H with three or more nodes.

In this pa~er we consider generalizations of the matching problem for planar graphs. In par-

ticular, we focus on the maximum planar H-matching and perfect planar H-matching' problems,

which are deilned below. (Henceforth H and G are assumed to be connected planar graphs.)

Problem: Maximum Planar H-matching.
Instance: A planar graph G and an integer k.
Question: Does G contain k node-disjoint copies of H?

Problem: Pi.rfect Planar H-matching.
Instance: A planar graph G.
Question: Can the nodes of G be completely covered with node-disjoint copies of H?

Although the Kirkpatrick-Hell result does not extend to planar graphs, a number of NP- -

completeness results have been proved for particular values of H. For example, maximum planar

H-matching was recently shown to be NP-complete for H = K 3 (a triangle) and H = K 1 ,3 (a

claw) [41.
No non-trivial graphs H were known for which either the maximum planar Il-matching or

the perfect planar H-matching problems could be solved in polynomial time. This fact, combined

with the KirKpatrick-liell result (as well as other general NP-completeness results along these

lines) leads one to conjecture that both problems are NP-complete for any connected IH that

contains three or more nodes. In Theorem I of Section 2, we prove that the conjecture is true for

maximum pl.nar H-matching. As we show in Section 3, however, the conjecture is false for perfect

planar /1-matching. In particular, we show that perfect planar 11-matching is NP-complete for

any connected outerplanar H with three or more nodes, but also that the problem is solvable in

linear time for any triangulated H with four or more nodes. The precise characterization of H

for which perfect planar H-matching is solvable remains a difficult and interesting open question.

In additi n to proving NP-completeness results, we also consider approximation algorithms

for maximunt planar If-matching. In particular, we give a simple argument to show that there

is a polynorrial time algorithm which is guaranteed to find (1 - E)k node-disjoint copies of H

in any planar bounded-degree graph G where k is the maximum number of node-disjoint copies

of i in G and f = O(l/V/lOg ). (In [1], Baker describes a more general and probably more

practical algjrithm that works for all planar graphs. No such results are known for the non-

planar version of this problem.) Moreover, we show that it is unlikely that a substantially better

approximatic n algorithm exists. In fact, we show that if 133NP, then there is no polynomial-time
(1 - )-approKimation algorithm where e . O(l/k*) for any a > 0.

I.:



The techniques developed in this paper can be applied to solve a variety of related matching
problems. For example, the problem which originally motivated us to study generalized planar

matching comes from wafer-scale integration. This problem is known as the optimal tile salvage

problem [2] and consists of finding the maximum number of non-overlapping 2 X 2 regions of

functioning cells in a v-Nx -N grid of cells, some of which are faulty. Although Fowler, Paterson

and Tanimoto [5] proved that finding the maximum number of 3 X 3 squares of functioning cells

is NP-complete, the complexity of the 2 X 2 problem remained unknown. In Section 4, we apply

the techniques developed in the paper to give a simple proof that the x X y optimal tile salvage

problem is NP-complete for all (x, y} except {1, 1} and {I, 2}. Fortunately, we are also able to

provide a simple, fast and efficient approximation algorithm for this problem.

The techniques developed in this paper can also be applied to problems for which the copies %
of H in G must only be edge-disjoint or for which the copies of H1 must be induced in G, although
we have not worked out the details in this paper. They also appear to be useful for reductions
to minimum covering problems, planar packing problems, three-dimensional packing problems,
and certain planar games like "dots and boxes." [2-81

The remainder of the paper is divided into five sections. Section 2 contains our results
on maximum planar H-matching. The perfect planar H-matching results are'in Section 3.
Applications of our techniques are described in Section 4. We conclude with acknowledgements
and references in Sections 5 and 6.

2. Maximum Planar H-Matching

In this section, we determine the complexity of maximum planar H-matching for any H.
Without loss of generality, we assume that H and G are connected. (It is easy to extend the

results to H and G that are not connected.) If H has two or fewer nodes, then the problem is
easy. In Section 2.1, we show that maximum planar H-matching is NP-complete for any H with

three or more nodes. We describe approximation algorithms for this problem in Section 2.2.

2.1 NP-Completeness

Theorem 1: Maximum Planar H-matching is NP-complete for any H with three or more
nodes.

Proof: The analysis is divided into two classes depending on whether or noL the largest
2-connected component in t- is unique. (Cut edges are considered to be degenerate examplks of

2-connected components.) A special case is considered for each class before the result is proved.
For H that contain a unique maximum-size 2-connected component, the special case is a cycle
with 3 nodes. For H that contain two or more maximum-size 2-connected components, the special

case is a path with 3 nodes. In all cases, the reduction is from Planar 3-SAT [9].

Class 1: Ht contains 3 or more nodes and a unique maximum-size 2-connected component.

Proof for Special Case: I is a 3-cycle.

Given a planar 3-SAT problem P with variables x1 ,..., x, and clauses cl,..., c,, let G(P) be
the associated planar graph with nodes mi, ... ,x,,cl, .... c, and edges representing an incidence or

a variable in a clause. In what follows, we will show how to transform G(P) into another planar

2



Given a planar 3-SAT problem P with variables 2.1,..., z and clauscs c1,..., c,, let G(IP) be
the associated planar graph with nodes xj, ..., z,, c , ..., cs and edges representing an incidenice of
a variable in a clause. In what follows, we will show how to translorn G(P) into another planar
graph G*(P) that has rs + s disjoint 3-cycles precisely when P is satisfiable. As a result, we will
have shown that maximum planar Hf-matching is NP-complete in the special case that II is a
3-cycle.

To construct G*(P), we will replace every variable node of G(P) with a generator (see Figure
1) and every clause node with a receptor (see Figure 2). Each generator consists of Is nodes,
2s of which are designated as connection nodes. Connection nodes appear as empty circles and
(in Figure 1) are divided into consecutive pairs. The first node in each pair is called a positive
connection node and the second node is called a negative connection node. Each receptor has 5
or 7 nodes (2 or 3 or which are connection nodes) depending on whether the corresponding clause
contains 2 or 3 variables. Without loss of generality, we assume that every variable appears in
each clause at most once.

. -.

S pairs of

connection nodes

.4o.

00

Figure 1: Generator for a $-cycle.

...........

........................................
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Figure 2: Receptors for a 3-cyrde.

The embedding of G(P) in the plane provides a cyclic ordering or the edges around each
vertex. Pick a linear ordering of the edges around each vertex which is consistent with the cyclic
ordering. [f variable zi appears uricomplemented in clause cy, and the cdge rorn xi to c, in
G(P) is in the pth position of the linear ordering at zi and in the qth position of the ordering at
c., then identify the pth positive connection node of the ith generator with the qth connection
node of the jth receptor. If variable xi appears complemented in clause Cj, then idenitiry the pth
negative connection node or the ith generator with the qth connection node or the jLh receptor.
Because G(P) is planar, G*(P) must also be planar. For example, we have constructed G(P) and
G*(P) for the function (zt + X2 + X3)(Z-l + ia3 + x 4 )(!2 + X3 + Zl) in Figures 3a and 3b.
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It is easily seen that every 3-cyclC contained in G*(P) is contained wholly within :I generator

or a receptor. In addition, cach generator can contain at most s nodc-disjoint 3-cycles and each
receptor can contain at inost one 3-cycle. Hence thc number of disjoint 3-cycles in G*(I)) is at
mnost ra + s. In fact, wc will show that G*([P) conltainls rs + s disjoint 3-cycles precisely when 1P
is satisfiable, thus concluding the reduction.

As is shown in Figure 1, there arc precisely ltwo ways that a generator can contain s disjoint
3-cycles. One way (the true mode) rcquires thc use of all the negative connection nodcs but does
not use any of the positive connection nodles. rhe other way (the false mode) requires thle use of
all the positive connection nodcs but none of the negative connection nodes.

I * -0

-~ I -

Fiur 41 Geeatr intu n ai o.(oi ie eoeeiue ofr

.- cycles.



A receptor can eontain a 3-cyclc if and only if' one or' its connection nodes has beer. idenntified
with a positive cotncction node of a, generator in true mode or with a negative connection node
of a generator in railse mode. Thus, 1P is satisfiable if and only if there is a matchin,; in which
every receptor contains a 3-cycle. This concludes the proof that G*(P-) contains rs + a disjoint
3-cycles if and only if P) is satisfiable.

Proof for General 1l in Class 1

Let II bIe any connected1 planar graph with at least 3 nodes for which the maximumn-size
2-connected component in HI (de'noted by Rl) is unique. Embed If in the plane so that the outer
face is a cy.-le in f.Identify any three of' the nodes ip the cycle as a, b, and c. For example, see
Figure 5.

H as a. +rlar,5 e,

Figure 5:- Representationi of an arbitrary. class 1 graph as a 3-cygcLe.

Notice that the embedding of ii shown in F~iguri, 5 looks very much like a 3-cycle with vcrtices
a, b and c. Using this similarity, generators and receptors cami be constructed as showri in Figures
6 and 7.

7
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Figure 22: Receptor for case 2.

Branching (F-igure 23)

,r( miake crossing mnechanisms and to tic tip the loose transmission lines, we need a branching.
This is like a receptor, except it has one input and scveral outputs. Ir the iniput is true, all1 of the
outputs must be true. If it is false, one or the outputs will 1)e raise and the rest true. If you run
a branching in reverse, with two inputs and one output, both inputs cannot be T in a1 perfect
11-matching. If one input is T, and the other I", then the ouitput is T. If both are F, the output
is F. Similarly, if an inverter is reversed, the condition is imposed that all inputs are equal, and
the output is inverted.

Figure 23: A branching for case 1.

zz



Figure 21: Generator for case 1.

Receptor (Figure 22)

A receptor is simply 3 transmission lines meeting at a point. In a perfect matching, one line
must be true and the others false, siiicc the meeting point must be covered by exactly one copy
or if.



Inverters (Figure 20)

To construct generators, we need inverters. An inverter is a copy of 11 with transmission lines
connected to every point (this is where we need ii outer-planar). IL has one signal going in, and
k - I signals going out, each or which is inverted. Ir the copy or Ii in the center is present in the
matching, then the input is F ai the outputs are F, and ir it is absent, the input is ' and the
outputs F.

Figure 20% Inverters

Generators (Figure 21)

To make a generator, we first notice that a transmission line viewed backwards has the
opposite value, so to obtain one output x and one 2 we need only take a transmission line and
bend it. By adding inverters we can generate as many extra transmission lines for x and Z as we
want (since an inverter also increases the nuimber of signals) although we could have to generate
up to 2k more than we want. This is because each inverter gives us k - I additional z's or 's.

.o'. .'-



or H

Case 1 Case 2

FIgure 18: The two cases for H.

Transmission lines (Figure 19)

A transmission line can either be in true mode or false mode. In a perfect planar matching,
since every vertex must be used, each vertex v must lie either to the left of the Jf* to which it
is attached (ralse) or to the right (true).

-r' e t&se '-

Case 1

- rfl1UJ ~o

True False
Case 2

Figure 19t Transmission lines.

,cJ'.

19 •-i1



Figure 17: A typical graph G(P).

For each gadget, there are two cases to consider depending on the degree or the minimum
degree node v in H. Since F! is outcrplanar, it is easy to see that the degree or v is either I orF
2. If the degree of v is 1, we say we are in case 1, and if it is 2, case 2. Let k bc the number of
vertices in H. Then, deleting v, we have a subgraph 11 with k -I vertices which is connected to
v by I or 2 edges (Figure 18). In most of our constructiorls, case I and case I are similar enough
we need only illustrate one of them.



3. Perfect Planar (f-Matching

In this section, we determine the complexity of perfect planar H-matching for large classes of
II. In Section 3.1, we show the problem is NP-complete for connected outerplanar If with three
or more nodes. In Section 3.2, we describe a linear time algorithm for perfect planar If-matching
for triangulated Hi with four or more nodes. The precise characterization of If for which the
problem is solvable in polynomial time remains an interesting open question.

3.1 NP-Completeness

Theorem 4: Perfect planar 1I-matching is NP-complete for all otterplanar graphs 11 with
at least 3 vertices.

Proof: We use a reduction from I-in-3 SAT. The plan or attack is as follows: Given a I-in-3
SAT problem P, we take the clauses and the variables to be points in the plane, and make a
graph G(P) by connecting each clause to the variables it contains (we allow edges to cross). Next,
we replace each edge by a transmission line, each variable with a generator, each clause with
a receptor and each point where two edges cross with a crossing mechanism. We also attach
transmission lines to unused connection nodes on generators. These "loose" transmission lines
will then be brought together in endings, so as to be able to use all vertices of G*(P) given
a satisfiable P. For example, Figure 17 shows a typical graph C(P) before the nodes, edges,
crossings and loose ends are replaced by the gadgets to form G*(P).

17 ":



The approximation algorithm consists or four steps, as follows.

Step 1: Remove nodes of G that are not contained in any copy of 11. Call the resulting graph
G' and let N' denote the number of nodes in G1.

Slep 2: Jepeatedly use the l,iptow--Tarjan planar separator algorithm to partilion G' into
disconnected blocks, each with at most 6 log N' nodes where 6 > 0. At most 0(N'/V'6-log N') ..

edges are removed from G' in this process.

Step 3: By exhaustive search, find the maximum number of node-disjoint copies of II in each

block of the partition. --

Step 4: Output the union of the node-disjoint copies of II found in Step 3.

Theorem 2: The preceding algorithm runs in 0(j5) steps and finds (I -c)k node-disjoint

copies of 11 in G, where k is the maximum number of node-disjoint copies of H in G and c -

0 (1/V1)

Proof: Step I takes O(N) steps since for each node there are at most a constant number
of configurations of its neighbors that could form a copy of u. (Recall that G is assumed to
havebounded node degree, and that II is fixed.) Step 2 takes O(N' log N') = O(N log N) steps

since we are applying the linear-time Lipton-Tarjan algorithm once for an N'-node graph, twice
for -f-node graphs; and so forth for O(log N') iterations. Step 3 takes 3 N' (26 losN') -

o( N1+1 steps. Hience the running time is 0( N'+' + NlogN). For constant 6 > 0, this iso( -. 

Let k denote the maximum number of node-disjoint Copies of! in G. At most O(N'/1-/6T-_g N'
copies or H contain an edge removed in Step 2. Hence at, least k - O(N'/ 1 ,&gA7Y) copies of H
are output in Step 4. Since every node of G' is contained in some copy of' If and since every copy
of II can overlap at most a constant number of other copies of H, we know that k = Q(N').

Hence k - O(N'/1/Slog N' k - 0(k/1vTlg) and the algorithm outputs at least (I - c)k
node-disjoint copies of A where i = 0(1/V6ST_g ).

Theorem 3: If P34NP, then there is no polynomial-time (1 - c)-approzimation algorithm for

maximum planar H-matching when c = Ilk' for any a > 0, where k is the maximum number

of node-disjoint copies of II in the input graph G, and 11 is any connected graph with three or

more nodes.

Proof: Fix a > 0. We show that if a polynomial-time (I - 1/k*)-approximation algorithm

existed, then it would be possible to construct an exact algorithm for maximum planar I-
matching, which we showed was NP-complete in Theorem 1. Consider an N-node graph G and

the question of whether or not G contains k node-disjoint copies of II. Construct a graph G'

that consists of T > k- disconnected copies of G. If C contains at least k node-disjoint copies

of II, then G' contains at least Tk node-disjoint copies of Ii. Otherwise, G' contains at most

T(k - 1) = Tk - T node-disjoint copies of H. In the former case, a (1 - l/ko)-approximation
algorithm finds (I - l/(Tk)")Tk = Tk - (Tk)' - a > Tk - T node-disjoint copies of it. This

cannot happen in the latter case. Hence, ie-approximation algorithm can be transformed into
an exact algorithm. "

. .. . .~~~ ~.. ..- .: - .: -.-• - . . - , , . . , .:: ,. . ::: .... ,.. - - - .. -, : . . . ,
. . . .. .,,L L l l..-... . .... .-.,,mda nl i g ~ id d 
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fly previous arguments, it is clear that ( *(P) contains 5rs + s disjoint copies of II if P is

satisfiable. It remains to show that G*(IP) cannot contain 5rs + s disjoint copies or it if / is not
satisfiable. To prove this, we will show that (without loss or generality) every copy of It uses 3 of
the a, b or v nodes in G*(I). By the arguments used for the 3-node path case, less than 5ra + s

such objects can be contained in G*(P) if P is not satisfiable, thus concluding the proof.

Any copy of II which utilizes two or fewer of the a, b or v nodes must, without loss of

generality, occur in one of the three ways shown in Figure 16. (Recall that if a copy of I 'utilizes
a v node which corresponds to a "leaf" copy of A, then it might as well use the corresponding a
node since that a node cannot be used by any other copy of H.)

-.-- V&A v "y A b

(a1 (bi 1(1")

Figure 16: Possible cases for occurrences of 1 in G*(P).

In the first two cases (Figures 16a and 16b), there is one less copy of ft available than is
needed to make a copy of H. Hence a copy of H cannot occur in this fashion. In the last case
(Figure 16c) there are just enough maximum-size 2-connected components available (provided
that a is not in a maximum-size 2-connected component of H; otherwise we are done) but there
are not enough nodes available which are in 2-connected components separating maximum-size
2-connected components. This is because all such nodes in H are contained in A and cannot be
replaced by nodes in B. Since a is such a node, it must be used in order to complete a copy of
H. Hence H cannot be contained in any of the structures shown in Figure 16 and the proof is
complete. i

2.2 Approximation Algorithms

In 11), Baker describes a provably good approximation algorithm for a variety of problems

including maximum planar H-matching. In what follows, we describe a simpler, but possibly less

practical, approximation algorithm that works ror planar graphs with bounded node degree. The

algorithm is based on the Lipton-Tarjan planar separator theorem 110), runs in O(NI+6) steps for

any 6 > 0 and any N-node graph G, and is guaranteed to find at least (1-f)k node-disjoint copies

of H where k is the maximum number of node-disjoint copies of II in C and e = O(/v0061).
Afterward, we show that any substantial improvement of this algorithm is unlikely. In fact,

we prove in Theorem 3 that if P3NP, then there is no polynomial-time (1 - E)-approxiinatior-

algorithm for maximum planar If-matching wheree = 0(1/k") for any a > 0.

-'5 ..- -"..-: -. :.....-........-..-...............................



Figure 14: Part of a generator for Class 2.

Figure 15 One kind of receptor for Class L.
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component containing v that separates ft from another maximum-size 2-connected component.
If a maximum-size component in A contains v then choose a to be a node on the same face as v
in that maximum-size component. For example, see Figure 13.

va

Representation forH

igure 13: Representation of an arbitrary class I graph as a 3-node path.

As is shcwn in Figure 13, H has a planar embedding that resembles a path with 3 (lodes (a,
v, and b) and 2 edges (A and 13). Using this analogy, it is possible to gcneralize the generators
an(I receptors of Figures 8 arid 0 as shown in Figures H4 and 15. Using the generalized generators
and receptors, G*(I) is then constructed as before.

13



It is easily seen that a gadget contains three disjoint 3-node paths. If one gadget is used to
produce three disjoint 3-node paths in G*(P), however, its neighboring gadgets can only be used

to produce two disjoint 3-node paths. (The neighboring gadgets would then have less than 9
nodes available.) Hence each generator contains at most 5a disjoint 3-node paths. There are only
two ways to fit 5a disjoint paths in a generator. One way (the true mode) requires the use of all
the negative connection nodes but does not use any of the positive connection nodes. The other
way (false mode) requires the use of all of the positive connection nodes but none of the negative
connection nodes. These two modes are illustrated in Figure 12.

False Mode

+" +b

Figure 12: True and false modes for generators. (Solid ines denote edges used to form
S-node paths.)

A receptor can contain a 3-node path if and only if one of its connection nodes has been
identified with a positive connection node of a generator which is in true mode or if one of its
connection nodes has been identified with a negative connection node of a generator in raise

mode. lence every receptor can contain a 3-node path il' and only if P is satisfiable. Thus G*(P)

contains 5rs + s disjoint 3-node paths if and only if P is satisfiable.

Proof for General Hi in Class 2

Let H be any connected planar graph containing two or more maximum-size 2-connected
components. Find a cutpoint v of II which is contained in one of the maximum-size 2-connected
components [I, and which separates it from the rest of the maximum-size 2-connected componenu
in II. Let B denote the union of {v} and the connected component of H - {v} containing v,- {v},
and let A denote the union of {v} and the rest of H. Further, let b be a node on the same face
as v in ft, and let a be a node which is on the same face as v in A and which is in a 2-connected
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rach genecrator is rormied by caseading 2s copies of the 9-nodc gadget shown in F'igiure 10.
Without loss of generality, we ran assii me that all disjoirit 3- node pathls arc contai ned totally
within a roceptor or a gadgcl. like that shown in Fi1gu re 10. This is duie to the t'av t that m

* 3-node path between 2 gadgets (or a gadget and a receeptor) is;olates a leaf' in the neighboring
bcadl (or receptor). Since dhe leaf cannot be used by any other 3-node path, it mnight as Well

busdby the offending 3-node path in a way which places the 3-node path totally within the
gadget or receptor. Por example, sve Figure 11.

Figure 10: Gadget uied to build generator.

3 node path between Remedy
2 gadgets

Figure 11.- Without loss of generality, every 3-node path is entirely contained within a

gadget of a generator or within a receptor.
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Given a planar 3-SAT problein P, tile construction of G*(I)) is the same as before except that
the generators and receptors in Figures 6 and 7 are used in place of those in Figures 1 and 2.
As before, G*(') is planar and contains rs + q disjoint, copies of If if P is satisfiable. It remains
only to show that G*(P) contains less than rs + s disjoint copies of If if P is not satisltable.

Since every copy or If contains a copy or ft, the number of disjoint copies of F[ in G*(P) is
-an tipper bound on the number of disjoint copies of 1I in G'(P). In what follows we will show
that G*'(P) contains less than ra + s copies of ff if 1' is not satisfiable, thus concluding the proof.

There are two ways that a copy of 1 can occur in G*(P): totally within a triangular copy
of II or across several triangular copies of 1!. Any copy of ft which is contained within a
triangular ccpy of I[ must utilize the a, b and c nodes in that copy of 11 since i contains only
one maximum-size 2-connected component. Because ft is 2-conncctcd, any copy of ft which spans
several triangular copies of 1i must contain a cycle that contains several of the nodes labeled a, b
or c in the v trious copies. Such a cycle may be formed with or without the use of receptor nodes
but must always use two of the a, b and c nodes of each triangular copy of II that is entered
by the cycle. Inspection of Figures 6 and 7 reveals that one of these copies of II ha'i just two
connections to the rest of G*(P). (In proof, note that receptor If's only have two connections
to the rest of G*(P). Cycles not entering receptor triangles of 11 must enter every I.riangle of
II in some g;enerator. In every gene'rator, there are always some triangular t not conrnected to
a receptor.) Since the remainder of the nodes in this copy of 11 cannot be used to form other
copies of fl (they become disconnected from G*(I)), the number of copies of fl is not decreased
by replacinh; the copy of F- spanning several triangular copies of i with a copy of fH contained
entirely withiin the triangular copy of H having just two connections to the rest of G*(P). [fence
every copy of ft can be assumed to use the a, 6 and c nodes of some triangular copy of II. The
remainder of the analysis is then identical to that for the special case of 3-cycles.

Class 2: II contains two or more maximum-size 2-connected components.

Proof I'or Special Case: H is a path with three nodes.

The proof is very similar to that for 3-cycles except that different generators and receptors
are used. The new generators and receptors are displayed in Figures 8 and 9. As before, each
generator has 2s connection nodes (recall that s is the number of clauses in the problem P) and
each receptor has 2 or 3 connection nodes. The 2s connection nodes are divided into consecutive
pairs of poiit.ive and negative nodes and the identification of nodes to form G*(l') is identical to
that done "or 3-cycles.

........... ..................................... . :.3. . .::.....,,-..... ..... 1... ............ ............... .......



Partial Crossing Mechanism (Figures 24 and 25)

We first devise a partial crossing mechanism so we can later build a crossing mechanism with
*it. This gadget accepts input signals which are (T, T), (T, F) or (F, 7'), and makes them cross,

_ but makes it impossible to complete a (F, F) input to a perfect Hl-matching (Figure 26). By
*reversing the inputs and outputs, we get a partial crossing mechanism that accepts everything

but (T, T). We label the first one a true (T) partial crossing mechanism and the second a false
(I,') partial crossing mechanism.

Inputs

0 Outputs

Figure 241 A true (T) partial crossing mecharnism for case I.
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Inputs

outputs

Figure 25: A true (T) partial crossing mechaism for case B



I.-

T I

[".

T

Figure 26: Using the T partial crosing mechanism for cae 2 to crass (T, T), (F, T) and
(T, F) signal.
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Crossing Mechanism (Figure 27)

By combining branchings, inverters, and partial crossing mechanismns, we (-a-n con'Ariict a
jcrossing nielhanismn as shown in 1'igure 27. 11' the left input is T, both branches are TI. \ft.4'r the
-inverter, the lower horizontal lines are F, so all the partial crossing mechanisms on the vertical

- transmission line have at least one input of the proper kind. Thus these signals will eross. After
* the second inverter all horizonital signals are false, so thre remaining partial crossing miechanismis

work. A reversed branching with two raise inputs gives a ralse output, so all inputs into the -

b reversed inverter are 1", giving an output of T.
If the left input is F, things get trickier. The branching must have one F and one T output.

If the vertical input is false, then the top branch must be true. Ir the vertical input is true, the
*top branch must be thc false branch. Otherwise niot all the partial crossing mechanisms on the

vertical line can be completed to a perfect matching. After thc first two inverters, whichever
case holds, one set of horizontal lines is F" and the other is T. This means all of the partial
crossing mechanisms on the right have one F and one T input, so they all work. Now, the
reverse branchings all have one false and one true input, so all their outputs are T, and after the
reversed inverter, we get an F signal, as we want.

FF

invertere
branchhing

Figure 27: A complete crossing mechanism
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Loose Transmission Lines (Figure 28)

To tie up the leftover transmission lines so that all vertices can be used, first noLe that the
number of vertices covered must always be a multiple of k. Thus, when we bring Lhe loose lines
together, the number or lines in raise mode will always be the same, mod k. We add exLra
transmission lines in raise mode (not conncctcd to anything) to bring this to an exact multiple
or k. Now, we notice that if we use an inverter with all k lines as input (Figurc 28), which we
will call an ending, then all k inputs must be the samne in a perfect f(-1matching, biut they can be
either all true or all false. Thus, if we can bring the false lines together in k's, we can tie themi
off using this ending. Unfortunately, we don't know which lines are going to be false. [owever,
we can still use this idea to end them.

To tie up the loose lines (assume there are exactly rn of them), we put an ('-,)- rold branching
on every line. We then construct ('7) endings and label each by a k-tuple of loose lines.

We then connect to each ending one of the outputs from the branching coming off the loose
lines corresponding to the label given the ending. For example, see Figure 29. Note that we will
need crossi.ig mechanisms to do this.

Now, since the number of false loose endings is a multiple or k, we can partition themi to
disjoint k-tuples. By putting in false mode the transmission lines from the loose lines in a k-tulple
to the ending labeled with that k-ttiple. the other endings will have only true tranmsmission linres
leading into them. Thus, all the loose lines can be made p.art or a perfect matching. We now
have a graph that has a perfect 1I-matching, if and only if the original I-in-3 SAT problein is
satisfiable.

p.- -

Figure 28: An ending for case 2.

2.7

" o 'o O - o. o .° • . . . ° ° , • ° . . . ° , • o - . .. . . .. "o.



k1)-way branchinqs kniq

m .los2ie
3

Figure 29: Tying up the loose lines with endings.

There is still one thing wve must show, namvly that no spurious copies of 11 Call be put in
our graph. This is easy to do For transmission lines, branchings, and inverters: by connectivity
considerations, any other copy of' It would disconnect the graph, leaving the wrong cardinality
of vertices (i.e., not dlivisible by k) in one part. TPhe only rermai:1 ing building block (since endings
aire inverters, (Ac.) is thc partial crossing mechanism. This is f'airly easy to check also, using
the fact that we picked a yen cx of' minimum degree in II when F'orming I/*~. Since the number
or vertices covered on the partial crossing miechanism must be a multiple of' k, we can conclude

Trom the preeding that precisely two or' the four vertices connected to transmission lilics must
be covered by the copy of If on the partial crossing mechanism. fly looking at the six p~ossible
ways of choosing these two vertics, one can easily complete the proof.
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3.2 Linear Time Algorithms

Theorem 5: There is a linear time algorithm for perfect planar If-matching wh,:never [ is .
a triangulated graph with four or more nodes.

Proof: First we notice that any embedding of a triangulated planar graph is triangulated. If"
G is composed of copies orI H, then there will be a copy or ii on the "inside" (i.e. !ioike of the
interior faces of this Ii enclose nodes). Since I is triangulated, there is a triangle in ' enclosing .-

ill! nodes, including the nodes on the triangle.
On the other hand, if any triangle encloses exactly 1ill nodes, it must be a copy of It. To

show this we use the fact that any completely triangulated graph with four or more no'les is 3-
connected. If any copy of I1 contains a point inside and a point outside the triangle, this implies
that it mus. contain all three vertices of the triangle. This is a contradiction since removing this
copy of 11 eaves less than Fill nodes enclosed by the triangle disconnected from the rest of G.
Thus, if G -an he decomposed into copies of II, this triangle and the nodes encloseci by it must
for rr one st ch copy.

We now remove this copy of i, and proceed recursively. Since we can check for isomorphism
with /I in -onstant time, this gives a polynomial algorithm. As a corollary, if such a decomposition
exists, it i' unique.

To make this algorithm runin linear time, first identify all the triangles in the graph. This
can be doiw by repeatedly identifying all triangles containing a node of low degree, and then
deleting I I'e nodes of low degree. Since a constant portign.of the iodes it any planar graph have
degree at most 6, this task can easily be accomplished in linear time.

Next, we store the triangles on a tree, where each triangle's descendants are those triangles it
contains. H3y examining the triangles containing a given node, one can assign -a tree structure to
them in time proportional to the degree of the node. We can combine these local tree structures
to obtain the desired tree by using depth-first search.

Now traverse the tree in post-order (leaves first), and at each node do the rollowing: If the
triangle corresponding to the node contains less than 1111 vertices of G, remove the node from
the tree. if it contains exactly 1111 vertices of G, check if it is a copy or 11. if not, return "no
decomposition." If it is a copy of 11, remove this lear from the tree and all the vertice,; in this copy
of !I from C. If the triangle cortains more than 11 nodes, return "no decomposition." Depth-
first search takes linear time. In the second part, we spend constant time on each triangle (unless
we find more than 1111 nodes in it, in which case we stop immediately). Thus, the algorithm takes
linear time. U

4. Applications

The tc( hniques described in this paper can be applied to solve a variety of i'elated problems.
The optirral tile salvage problem is one example. The problem can be described as follows:
Consider -n V'N X ,W/2V region of tile plane tiled with unit squares, some of which have been"
removed. '"he tiles which remain repreccnt functional chips and the tiles which have been removed
represent faulty chips on a wafer. The optimal z, y tile salvage problem is to find the maximum,
number of functional, non-overlapping x X y tiled rectangles, The orientation of the rectangles
does not matter and we assume without loss of generality that z < y. For z = 1 and y = 1,

. -. .



the problem is trivial. For x I 1 and y = 2, the problem can easily be solved as an instance or
the usual maximum matching problem. On the other hand, Fowler, Paterson and Tanimoto [5]
showed that the optimal tile salvage problem is NP-complete if z = 3 and y = 3. By applying
the techniques developed in this paper, all but the trivial cases (I X 1) and (I X 2) are easily
shown to be NP-complete. This is because the generator, receptor, and transmission line gadgets
of Section 2 can also be modified to work in a grid setting for any rectangle with x = I and y >_ 3
or z > 2 and y > 2. For example, a generator for the 2 X 2 tiling problem is shown in Figure
30. Notice the close relationship between the tiling generator and the graph generator in Figure
6. A complete set of gadgets (e.g., receptors, transmission lines and generators) is included in
Figures 31-33.

r7 + ..

Figure 0 A generator for the 2 X 2 optimal tile salvage problem. When in true mode, the
leftmost and rightmost pairs of squares on the + lines can be used to form 2 X 2 rectangles,
but not the leftmost and rightmrost pairs of squares on the - lines. The reverse is true when
the generator is in false mode.

The approximation algorithm described in Section 2.2 can be very easily applied to grid prob-
lems since for most practical problems the cut made by the Lipton-Tarjan separator algorithm is
likely to be a straight-line cut through the grid. The algorithm developed by Baker [I] also gives
a very nice approximation algorithm for this problem.

It is likely that there are further applications of these techniques. For example, the gadgets
seem to work for planar H-matching problems involving edge-disjoint graphs or induced graphs
for many graphs 1t. The reduction can also be easily extended to give an alternate proof of the
original Kirkpatrick-Ifeil (8 result for non-planar generalized matching, and for several other
covering, packing and matching results [3-61.

As a final example, we apply a result of Johnson [7] to show that the "dots and boxes" game
is NP-complete. In dots and bozes, two players take turns drawing unit length segments between

................... " - ". .
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Figure 31: Receptors for the z X y optimal tile salvage problem. The case when z 1

and y > 3 is shown in (a), and the case when x > 2 and y : z is shown in (b). Asterisks

denote unit squares that serve as connection points to transmission lines. Arrows denote the

origination and outgoing direction of transmission lines.

x*¥-I

Figure 32: Two types of transmission lines. Asterisks denote unit blocks connecting z X V

rec tan lies.
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consecutive points on an N X N grid. Whefiever one player completes the perimeter around a
unit square, he wins that square and draws another edge. The player winning the most squares
wins the game. The problem is to decide whether or not a player has a winning strategy starting
from a specified position (e.g., the input is a set of drawn segments and captured squares in the
grid). In (71, Johnson shows that this problem is NP-complete if maximum K3 -matching is NP-
complete for planar graphs with maximum node degree four. This is almost implied by the proof
(in Section 2.1) that maximum planar K 3-matching is NP-complete. The only problem is that
the receptor in Figure 2 could have degree six. In Figure 34, however, we illustrate an equivalent
receptor with maximum degree four. Note that this receptor contains four node-disjoint triangles
if and only if one of the connection nodes is not used by a generator triangle (e.g., if and only if
the receptor is "true"). Otherwise, the receptor contains only three node-disjoint triangles. The
remainder of the NP-completeness proof is identical to that in Section 2.1.

Figure 34: Receptor for a $-cycle with maximum node degree four. Aa in Figure 2,
connection nodes are drawn as empty circles.
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